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ABSTRACT: As engineering foundations such as standards
and abstraction begin to mature within synthetic biology, it is
vital that genetic design automation (GDA) tools be devel-
oped to enable synthetic biologists to automatically select
standardized DNA components from a library to meet the
behavioral specification for a genetic circuit. To this end, we
have developed a genetic technology mapping algorithm that
builds on the directed acyclic graph (DAG) based mapping
techniques originally used to select parts for digital electronic
circuit designs and implemented it in our GDA tool, iBioSim.
It is among the first genetic technology mapping algorithms to adapt techniques from electronic circuit design, in particular the
use of a cost function to guide the search for an optimal solution, and perhaps that which makes the greatest use of standards for
describing genetic function and structure to represent design specifications and component libraries. This paper demonstrates the
use of our algorithm to map the specifications for three different genetic circuits against four randomly generated libraries of
increasing size to evaluate its performance against both exhaustive search and greedy variants for finding optimal and near-
optimal solutions.
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As engineering foundations such as standards and abstraction
begin to mature within synthetic biology,1,2 one limiting factor
for the realization of more complex genetic circuits is the
availability and effectiveness of genetic design automation (GDA)
tools that use these foundations to separate the design of
genetic circuits from their physical construction. In particular,
it is vital that GDA tools be developed to enable synthetic bio-
logists to construct standardized descriptions for the structure
and function of genetic components3−5 and to automatically
select these components from a library to meet the behavioral
specification for a genetic circuit. By encoding knowledge in
tools and standardized data, GDA can lower the barrier to entry
for new designers and promote the reuse of experimentally
proven genetic components. Through intelligent automation,
GDA can make the design of more complex genetic circuits
tractable and decrease the length of design and test cycles.
Toward this end, we have developed a genetic technology
mapping algorithm that builds on the directed acyclic graph
(DAG) based mapping techniques originally used to select
parts for digital electronic circuit designs6 and implemented it
in our GDA tool iBioSim.7,8

While iBioSim is one of the first GDA tools to adapt DAG-
based mapping techniques from electronic design automation
(EDA), it is by no means the first GDA tool to adopt
terminology, concepts, and methods from electronic circuit
design in general. Furthermore, synthetic biology as a whole has
encompassed research into genetic circuits for which high-level

function is commonly described in terms of digital logic
gates,9−11 an abstraction borrowed from electronic circuit
design. While this paper does not attempt to estimate the
percentage of all known genetic circuits that behave as digital
logic gates, it is worth noting that even randomly synthesized
genetic circuits have been found to exhibit phenotypic behavior
resembling digital logic.12 Owing to the relative simplicity of
digital logic and the existence of many tools and techniques that
make use of it in other engineering disciplines, there is a clear
opportunity for GDA tools to support the digital logic
abstraction in synthetic biology. Of equal interest are modifica-
tions of digital logic techniques to better reflect biological
reality, for instance multivalued logic methods that can
represent more than two states for a biological signal13 and
mixed-signal techniques that can combine discrete and
continuous descriptions of biological behavior.14−16

At present, our DAG-based approach to genetic technology
mapping introduces digital logic from EDA to GDA.
Accordingly, our behavioral representations for genetic circuits
and components are regulatory DAGs with a particular logical
interpretation that determines, for instance, whether a promot-
er activated by two different transcription factors is an AND
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motif or an OR motif. While such DAGs do not fully capture
the great diversity of genetic structure and function that is
found in nature and synthetic biology, they do capture digital
logic operations such as NOT and NOR. Hence, these DAGs
are sufficient for representing the abstract behavior if not the
actual mechanism underlying genetic circuits for which the
measured relationship between steady-state input and output
is fairly sigmoidal and, therefore, amenable to abstraction as
digital logic. In light of these considerations, the approach
described in this paper is best used to design genetic circuits
that implement combinational logic, such as composite genetic
logic gates and multiplexers for coordinating all-or-nothing
responses to multiple environmental signals,17−21 rather than to
design analog genetic circuits for more graded responses to
environmental signals22 or metabolic pathways for optimal flux
of chemically manufactured materials.23,24

Within the domain of synthetic biology that adheres to
digital logic, our approach focuses on addressing one of the
major differences between GDA and EDA, namely that genetic
components can produce signals with a variety of molecular
identities, unlike electronic components. When composing
genetic components to form a genetic circuit design, the molec-
ular identities of their signals must be accounted for to ensure
proper connections between components and avoid undesirable
cross-talk. The implication of this restriction is that each choice of a
genetic component for a genetic circuit design precludes the choice
of other components that would introduce cross-talk. Hence,
optimally mapping from a behavioral specification to a genetic
circuit design can be a very computationally expensive problem,
one in which every valid combination of genetic components
that can possibly produce the specified behavior may have to be
explored in order to ensure that the optimal circuit design is
found. This paper attempts to adapt computer science tech-
niques commonly used in EDA such as dynamic programming
and branch-and-bound in order to lower the average time taken
to find this optimum.
For GDA, the hypothetical quality of a genetic circuit design

is often defined with respect to circuit parameters of interest
such as number of genes, length in base pairs, signal delay, or
signal stability. For the purposes of design, these circuit
parameters can be derived from standardized descriptions of a
circuit’s constituent genetic components, including descriptions
of their structure, models of their behavior, and existing char-
acterization data. The actual quality of a given genetic circuit
design, however, can only be determined by constructing the
genetic circuit and testing it in a lab. This paper focuses for
simplicity on minimizing the total length in base pairs of our
genetic circuit designs, as this parameter is at least partly related
to other parameters such as delay in transcription/translation
and cost for de novo synthesis. Our approach, however, is
not limited to optimizing sequence length and can easily be
extended to handle other circuit parameters as well.
Other considerations for GDA besides the molecular identity

of signals include matching the time scales at which com-
ponents operate, matching the input/output ranges of com-
ponents, and making sure that components are otherwise com-
patible with their host or platform for deployment. Previous
research on the problem of genetic technology mapping has
resulted in GDA tools that handle some or all of these design
considerations, including the Genetic Engineering of Living
Cells (GEC),25 MatchMaker,26 Cello,27 and the Synthetic
Biology Reusable Optimization Methodology (SBROME).28

Of these considerations, iBioSim currently only accounts for

the molecular identity of signals to ensure input/output com-
patibility and avoid cross-talk, but unlike other GDA tools, it
uses a cost function to guide the DAG-based selection of genetic
components. A cost function is an unambiguous, mathematical
description that implicitly denotes the relative importance of
different circuit parameters and explicitly relates them to the
hypothetical quality of a genetic circuit design. Consequently, a
cost function provides an extensible basis for computing and
comparing solutions to the genetic technology mapping
problem and enables the application of dynamic programming
and branch-and-bound techniques to speed up its solution.
Lastly, the implementation of our approach in iBioSim also

integrates genetic technology mapping with standards for
genetic structure and function. These standards include the
Systems Biology Markup Language (SBML),29 an established
standard for describing biochemical models that is supported by
over 250 software tools, and the Synthetic Biology Open
Language (SBOL),30,31 a nascent standard for describing
genetic components that has growing support among GDA
tools.32−35 The incorporation of standards into our approach
provides for the possibility of greater interoperability between
GDA tools in the future.

■ RESULTS AND DISCUSSION
Our approach to genetic technology mapping can be divided
into three stages: graph construction, partitioning and de-
composition, and matching and covering. Figure 1 presents an
overview of this process as applied to automate the design of a
genetic multiplexer,21 a genetic circuit that can be used to share
multiple incoming signals with another genetic circuit and
thereby reduce resource requirements. During the first stage of
our approach, regulatory DAGs are constructed from a model
specification written in SBML and a library of SBML models
annnotated with SBOL DNA components. Each DAG con-
structed from a library model is also assigned a cost that is a
function of the combined length in base pairs of DNA
components annotating the model. During the second stage,
the specification DAG is partitioned into a set of rooted DAGs
(also called trees) and is decomposed alongside the library
DAGs to a logically equivalent canonical form. Lastly, during
the third stage, the library DAGs are matched to each node in
the specification DAG and lower bounds on the costs of
solutions starting at each node are calculated via dynamic
programming. Matches are then selected using a branch-and-
bound approach to obtain a solution set of library DAGs and
their corresponding SBOL-annotated SBML models that may
be composed to satisfy or ″cover″ the original specification for
a minimal cost.
Before describing the three stages of our approach in greater

detail, let us first outline two major assumptions that are in-
herent in our approach as it currently stands. First, our
approach assumes that the genetic components in a library have
a sigmoidal relationship between steady-state input and output,
such that it is possible to distinguish between high and low
inputs/outputs to a component and assign a logical semantics
to their relationship such as OR or AND. This is not an entirely
unfounded assumption given previous research into the design
and construction (even random construction12) of genetic
components10,11,17 and circuits18,20,21 with steady-state pheno-
typic behaviors resembling digital logic. Second, our approach
assumes that it is possible to connect genetic components
on the basis of whether the molecular identities of their input
and output signals are the same, but in doing so, our approach
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neglects other considerations for connecting components, such
as determining whether the high and low output signals for one
component constitute high and low input signals for its
connected component, or whether two connected components
are compatible in the context of their intended host. In the
future, if our approach is extended to explicitly address these
other considerations for component compatibility, then our
approach can also leverage our cost function framework to
guide the search for a solution that maximizes component
compatibility, rather than just ensure that component
compatibility is satisfied.
Graph Construction. The genetic circuit models for our

specification and library are written in SBML and are composed
of species and reactions. Within these models, species are
interpreted as the small molecules or protein transcription

factors that relay signals within genetic circuits. Reactions, on
the other hand, are interpreted as the combined genetic
processes of transcription and translation initiated at a
promoter or as complex formations involving small molecules
and/or transcription factors. In order to facilitate the
interpretation of SBML in this genetic context, the species
and reactions in our genetic circuit models are annotated with
the appropriate Systems Biology Ontology (SBO) terms. In
particular, reactions are annotated with the term complex
formation or genetic production. Within genetic production
reactions, species modifiers are annotated with the term
stimulator or inhibitor. Furthermore, in order to identify the
SBOL DNA components that are described by our genetic
circuit models, the species and reactions in these models are
annotated using a previously developed methodology for

Figure 1. Overview of our genetic technology mapping process as applied to automate the design of a genetic multiplexer.21 (A) iBioSim is used to
build a SBML model of an abstract genetic multiplexer and a library of SBOL-annotated SBML models of genetic components that implement digital
logic operations. The model of the genetic multiplexer contains species (blue ellipses) that are modifiers (lines) or reactants/products (arrows) of
genetic production and complex formation reactions (purple circles). (B) A regulatory DAG specification and library of SBOL-labeled DAGs are
constructed from the SBML model specification and library. See Figure 2 for a key describing the nodes and edges of a regulatory DAG. (C) The
DAG specification is partitioned and decomposed alongside the library DAGs to faciliate matching and covering. (D) The DAG specification is
matched and covered to obtain an optimal solution set of library DAGs. (E) Composite SBOL DNA components are inferred from the structure of
the cause-and-effect relationships between DNA components as encoded by the solution.5
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SBML-to-SBOL annotation.5 Figure 2 displays the regulatory
DAGs constructed from the SBML models for a simple, ab-
stract genetic circuit and a library of genetic logic gates. A later
section returns to the DAGs for this genetic circuit and library
in the Matching and Covering section as a part of a basic
example of our approach.
During the construction of a regulatory DAG from a SBML

model, species nodes and promoter nodes are created for each
species and genetic production reaction, respectively. Directed
edges are created between species nodes and promoter nodes
in accordance with the structure of the genetic production
reactions. In particular, edges are drawn from the species nodes
for the modifiers of genetic production reactions to the pro-
moter nodes for these reactions, and edges are drawn from the
promoter nodes for genetic production reactions to the species
nodes for these reactions’ products. The former are labeled
as activation or repression edges, depending on whether the
reaction modifer is annotated with the SBO term stimulator or
inhibitor, while the latter are labeled as production edges.
Directed edges are also created between species nodes in
accordance with the structure of any complex formation
reactions. Specifically, edges are drawn from the species nodes
for reactants in complex formation reactions to the species
nodes for the products in these reactions and are labeled as
complex formation edges.
Once a regulatory DAG is constructed, all of its nodes are

labeled with the Uniform Resource Identif iers (URIs)37 for any
SBOL DNA components annotating the nodes’ corresponding
SBML elements. This labeling is later used during matching
and covering to determine whether the choice of a particular
DAG would introduce cross-talk to a solution. This paper omits
the labeling for ribosome binding sites and terminators to
simplify the presentation of our approach. These DNA com-
ponents are still included in the files for our test cases (see

Supporting Information section). Next, each DAG is assigned a
cost as a function over the parameters of its associated DNA
components. This paper uses a very simple cost function over a
parameter that is easily obtained: the combined length in base
pairs of the DNA components associated with a DAG. At the
very least, the length in base pairs of a circuit can be partially
correlated with other design parameters of interest such as
delay in transcription/translation and cost for de novo synthesis.
In the future, however, we are keenly interested in extending
our cost function with other relevant parameters such as the
high and low levels of input and output signals for genetic
components, the noise associated with these levels, and the
degree of input/output compatibility when two components
are connected.
Finally, to distinguish between regulatory DAGs and make

them amenable to logical decomposition, let us assign one
possible logical semantics to the genetic regulatory motifs
present in these DAGs. Under this semantics, a promoter node
with a single repressor is an inverter motif while a promoter
with two repressors is a NOR motif. Inverter and NOR motifs
produce output only when no inputs are present. Similarly, a
promoter with one activator is a buffer motif while a promoter
with two activators is an OR motif. Buffer and OR motifs
produce output when one or more inputs are present. Lastly, a
promoter with a complex activator is an AND motif while a
promoter with a complex repressor is a NAND motif. An AND
motif produces output only when both inputs are present while
a NAND motif produces output so long as both inputs are not
present.
Note that this particular logical interpretation enables the re-

gulatory DAGs of our approach to capture the abstract behavior
if not the exact mechanism of genetic circuits that implement
combinational logic. For example, in Figure 1, part of the solu-
tion for the genetic multiplexer is an AND motif that includes

Figure 2. Construction of specification and library DAGs (middle and right) from the SBML models for a simple, abstract genetic circuit and a
library of genetic logic gates (left). The colored symbols belong to the SBOL Visual extension36 and represent SBOL DNA components labeling the
nodes of our library DAGs. The numbers on the library DAGs indicate the cost associated with choosing that DAG to cover part of the specification
DAG. Normally, each library DAG would have a cost equal to the combined length in base pairs of its associated DNA components, but this example
uses smaller, simpler costs to make it easier to follow along later during matching and covering.
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complex formation between LuxR and LuxI. Strictly speaking,
it is the enzymatic product of LuxI, AHL, that forms a complex
with LuxR and then activates the promoter pLux, but this
additional mechanistic detail is not necessary to express the
abstract logical relationship between the inputs and output of
the underlying genetic circuit.
Partitioning and Decomposition. During partitioning

(see Figure 3), the specification DAG is split at nodes with
more than one outgoing edge into n rooted DAGs, where n is
the total number of outgoing edges at these nodes. Partitioning
enables the use of dynamic programming to calculate lower
bounds on the costs of solutions starting from each node
during matching. These lower bounds can then be used during
covering to terminate the search for suboptimal solutions and
thereby speed up the process of finding optimal solutions for
each partition. The trade-off is that there is no guarantee of
global optimality when the covered partitions are composed to
form a final solution. As with many heuristics, the hope is that
the nonglobally optimal solution is found more quickly and that
it is still of fairly high quality.
Decomposition, on the other hand, increases the number of

matches that can be made between the library DAGs and each
node in the specification DAG, thereby increasing the number
of possible solutions during covering and potentially improving
the quality of our final solution. During decomposition (see
Figure 3), the specification and library DAGs are transformed
to a logically equivalent canonical form. In this canonical form,
the DAGs only contain inverter and NOR motifs. Con-
sequently, if the library contains at least as many inverter and
NOR motifs as the decomposed specification DAG, then it is
guaranteed that there is a complete solution that satisfies the
specification DAG. This is particularly useful when a genetic
regulatory motif is not shared by the library and specification
DAGs prior to decomposition. For example, if the specification
DAG contains a complex activator but the library DAGs do not,
then this AND motif must be decomposed to logically
equivalent motifs that are shared by the library DAGs in
order to facilitate a complete solution. While there are other
possible canonical forms based on different pairings of logical
motifs (such as inverter and NAND motifs), our approach
decomposes to inverter and NOR motifs based in part on their
prevalence in online repositories such as the iGEM Registry of
Standard Biological Parts.38

Matching and Covering. Our approach to matching the
library and specification DAGs builds upon that taken in

Keutzer’s foundational technology mapping system for elec-
tronic circuits, DAGON.6 Like DAGON, our tool also uses the
Aho−Corasick algorithm39 with little modification to match
strings of characters encoding paths through our library DAGs
with strings encoding paths through our specification DAG.
Through string representation and the construction of a
discrete finite automaton, the Aho−Corasick algorithm achieves
a worst-case runtime that scales linearly with the size of the
specification and independently of the size of the library.
During matching, the nodes of the specification DAG are

traversed in a topological order. At each node, the Aho−
Corasick algorithm is used to match the subtree rooted at that
node to the library DAGs. The library DAGs that match at a
node are then ordered such that the resulting sequence begins
with the DAG that is part of the minimal cost solution starting
at that node. Note that the minimal cost solution is determined
without giving consideration to the possibility of genetic cross-
talk due to shared transcription factors, as the cost of this
solution is meant to serve as a lower bound on the cost of any
solution starting at that node
For example, consider node O of the specification DAG in

Figure 4. There are four library DAGs that match the subtree
rooted at this node, namely the four inverter motifs at the
bottom of the library and the OR motif (decomposed to a
NOR motif followed by an inverter motif) in the upper right
corner. Of the inverter motifs, the motif on the far left has the
lowest cost of 5. If this motif is selected to cover node O, then
it would also cover down to node C. Since the previously deter-
mined lower bound at node C is 50, the lower bound at node O
resulting from choosing this inverter motif would equal 55. It is
possible, however, to obtain a better lower bound than this by
selecting the OR motif which has a cost of 30 and covers down
to nodes M and N. These nodes both have lower bounds of 5,
so the lower bound at node O resulting from choosing the OR
motif would equal 40. Hence, the OR motif is positioned first
in the list of matching library DAGs at node O and its co-
rresponding lower bound is entered into the table in Figure 4.
Once matches and lower bounds have been determined, the

process of selecting matches to form a valid, optimal cover
begins at the root of the specification and proceeds in a depth-
first fashion. Our covering algorithm, however, must take into
account the possibility of genetic cross-talk resulting from
shared transcription factors. Due to this possibility, a particular
matching library DAG may be selected only once during a
cover. Furthermore, each covering decision has implications

Figure 3. Examples of partitioning a DAG so that it has no nodes with more than one than one outgoing edge (left) and decomposing a buffer motif
to two inverter motifs in series (center left), an OR motif to a NOR motif followed by an inverter motif (center right), and an AND motif to two
inverter motifs in parallel followed by a NOR motif (right).
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that may effect future covering decisions, which prevents an
optimal solution from being found after a single traversal of the
specification. To address this problem, our covering algorithm
incorporates recursive backtracking and effectively becomes a
branch-and-bound algorithm.
In our branch-and-bound algorithm, whenever a dead-end

(i.e., a state in which selecting any available match introduces
cross-talk) or solution is encountered, the traversal of the
specification backtracks to the last node at which a match was
selected. The next best match is then selected provided that the
best-case estimate for the cost of a solution starting at this node
does not exceed the cost of the best solution found so far. The
best-case estimate is calculated by summing the total cost of the
currently selected matches plus the lower bound at this node.
While branch-and-bound guarantees that the optimal solution
is eventually found, it also has a worst-case runtime that scales
exponentially with the size of the input specification. In prac-
tice, the bounding aspect of branch-and-bound can improve the
average runtime by pruning the search for suboptimal solutions.
Figure 5 demonstrates the application of branch-and-bound
covering to the specification and library DAGs from Figure 2.
Finally, at the terminus of matching and covering, the SBOL-

annotated SBML models corresponding to the DAG matches
that make up the best solution found are composed to form
a composite SBML model annotated with composite SBOL.
The composite SBML model encodes the behavior for the
designed genetic circuit as a whole, while the composite SBOL
annotating the SBML encodes structural information on the
DNA components which make up the designed genetic circuit,
including their DNA sequence and sequence annotations. This
composite genetic circuit design that contains both structural

and functional information on DNA can then serve to inform
subsequent analysis, optimization, and verification steps, as well
as, the eventual physical construction of the design.

Test Cases. To evaluate the performance of our branch-
and-bound approach to genetic technology mapping, we have
used it to map three genetic circuit specifications against four
semirandomly generated libraries of increasing size, then
compared the results with those for a naive exhaustive search
that tries all possible solutions and a greedy variant of our
approach that returns the first solution found. The greedy
variant orders matches based on the lower bounds of costs for
solutions that start with them, but quits when the first solution
is found and does not use these lower bounds to inform the
search to find better solutions. Note that the specifications
mapped in this section are not meant to describe genetic
circuits that have a particular real-world application. Rather,
they are meant to serve as general examples that vary in size
and incorporate a range of regulatory motifs for the purpose of
benchmarking our approach.
As for the test libraries, each one is generated such that the

DAGs constructed from it conform to a roughly uniform
distribution of inverter, buffer, OR, NOR, AND, and NAND
motifs. Furthermore, each model in a library is annotated with
the URIs for DNA components having random, Gaussian-
distributed lengths and is made to share a URI for a coding
sequence DNA component with four percent of the other
models in the library. Annotating the test libraries in this
manner simulates the likely reuse of DNA components across
library motifs and larger modules and the resulting cross-talk
relationships between them.
Table 1 displays the results of mapping the specification

model for a genetic AND-OR-inverter (AOI) against libraries
containing 25, 50, 100, and 200 models. The AOI is shown in
Figure 6 and has an effective size of 11 nodes that must be
matched after its decomposition.
When mapping the genetic AOI, it appears that the solution

times for our branch-and-bound approach scale very well
relative to the size of the library, unlike the solution times for
exhaustive search. As expected, the sizes of the solutions found
with both approaches are the same, which indicates that
branch-and-bound does find the best possible solution but in
much less time. As for the greedy variant, its overall
performance when mapping the AOI is nearly identical to
that of branch-and-bound. Normally, it is expected that the
greedy variant produces a lower quality solution in less time
than branch-and-bound, but in this case, the best possible
solution is found first, and it appears that branch-and-bound
leverages this solution to terminate almost immediately after
finding it. This rapid termination is likely facilitated by the fact
that the theoretically optimal solution for mapping against each
library is within 400 base pairs of the best possible solution.
Lastly, the quality of the best possible solution increases with
library size, likely owing to the greater absolute number and,
therefore, diversity of motifs that are left to select from larger
libraries after a percentage has been ruled out due to
considerations of cross-talk during covering.
Next, Table 2 displays the results of mapping the

specification model for a genetic NAND-NOR cascade against
the same libraries used to generate results in Table 1. The
NAND-NOR cascade can be seen in Figure 6 and has a
decomposed size of 16 nodes.
When mapping the genetic NAND-NOR cascade, it appears

that the solution times for branch-and-bound increase by one

Figure 4. Partitioned, decomposed specification and library DAGs
from Figure 2. Includes the results of calculating lower bounds on the
costs of solutions starting at each node in the specification DAG and
covering down to its leaves. For example, after iterating through each
possible match to the subtree rooted at node O, it is determined that
the minimal lower bound for a solution starting at this node that
ignores cross-talk is obtained by selecting the OR motif in the upper
right corner. This motif has a cost of 30 and covers down to nodes M
and N, which each have a previously determined lower bound of
5 since matching proceeds in topological order. These lower bounds
are added to the cost of the OR motif to obtain a lower bound of 40 at
node O.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb400135t | ACS Synth. Biol. 2014, 3, 543−555548



to 2 orders of magnitude compared with the solution times for
the AOI, but it also appears that these times still scale fairly well
as library size increases. Exhaustive search, on the other hand,
times out when applied against all but the smallest of libraries.
As for the greedy variant, it is now consistently faster than
branch-and-bound, but produces lower quality solutions. In the
case of the library with size 50, however, the solution produced

by the greedy variant is only two base pairs worse than that
produced by branch-and-bound, suggesting that there are still
conditions under which the greedy variant can produce a nearly
optimal solution for larger specifications. Also, once again the
quality of the best possible solution increases with library size.
Lastly, Table 3 displays the results of mapping the spec-

ification model for a genetic OR-AND-invert (OAI) cascade

Table 1. Solution Times in Seconds (Left) and Sizes in Base Pairs (Right) for the Genetic AOI (Motif Size of 11 Nodes
Following Decomposition) Using Three Different Algorithms and Four Libraries of Different Sizesa

library size library size

algorithm 25 50 100 200 25 50 100 200

exhaustive search 0.2 1 60 >1 h 3662 2871 2946 n/a
branch-and-bound 0.01 0.01 0.02 0.02 3662 2871 2946 2913
greedy variant 0.01 0.01 0.02 0.02 3662 2871 2946 2913

aExahustive search is run for up to 1 h before timing out and failing to find a solution.

Figure 5. Covering with the specification and library DAGs from Figure 2. During the first traversal (upper left), a dead-end is encountered when
selecting any of the remaining inverter motifs from the library to cover the rest of the specification would result in unintended cross-talk. After
backtracking and encountering several other dead-ends, the next best match at node X is selected and the resulting traversal yields a complete
solution with a cost of 125 (upper right). Backtracking to look for better solutions yields a solution with a cost of 115 when the next best match at
node X is selected, which becomes the current best solution (lower left). Finally, when backtracking to node O and selecting the next best match, the
search for better solutions is halted because the best-case estimate for solutions starting from the next node C is 120, which is greater than the cost
for the best solution found so far. The best-case estimate for a partial solution is calculated by summing its current cost and the lower bound for the
remaining uncovered portion of the specification.
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against the same libraries as before. The OAI cascade is
depicted in Figure 6 and has a size of 24 nodes following
decomposition.
When mapping the genetic OAI cascade, it appears once

again that the solution times for branch-and-bound increase by
one to 2 orders of magnitude when compared with the previous
smaller specification, yet scale tolerably for larger library sizes.
Interestingly, the longest solution time occurs when mapping
against a library of size 50 and is an order of magnitude larger
than when mapping against the larger libraries. One likely cause
for this result is an increase in the cost gap between the first and

best solutions found for this size of library, which can make
bounding less effective at halting the search for suboptimal
solutions and pruning the decision tree. The cause of this cost
gap may be that the motifs that make up low-cost solutions close
to the theoretically optimal solution (i.e., motifs that appear early
in the sequence of matches at each node) are motifs that inter-
fere with each other, a condition made more likely by library
sizes that are small enough to increase the probability that any
two motifs interfere with each other, but not so small that many
solutions are ruled out due to cross-talk and pruning of the
decision tree is achieved regardless of bounding.

Figure 6. Test case specification DAGs. These include regulatory DAGs for a genetic AOI (upper left), a genetic NAND-NOR cascade (bottom),
and a genetic OAI cascade (upper right). The sizes of these DAGs following their decomposition are 11, 16, and 24 nodes, respectively.

Table 2. Solution Times in Seconds (Left) and Sizes in Base Pairs (Right) for the Genetic NAND-NOR Cascade (Motif Size
of 16 Nodes Following Decomposition) Using Three Different Algorithms and Four Libraries of Different Sizesa

library size library size

algorithm 25 50 100 200 25 50 100 200

exhaustive search 1 >1 h >1 h >1 h 11178 n/a n/a n/a
branch-and-bound 0.2 1 0.7 1 11178 10931 10592 8270
greedy variant 0.02 0.03 0.04 0.06 13219 10933 11107 8482

aExahustive search is run for up to 1 h before timing out and failing to find a solution.
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Figure 7 visualizes the dynamics of our branch-and-bound
approach as applied to the solution of the OAI cascade. For
library sizes other than 50, branch-and-bound converges to the
best possible solution cost within two to three solutions and the
majority of its run time is spent determining that there are no
better solutions. For the size 50 library, on the other hand,
11 solutions are found before the best possible solution. While
finding the first nine solutions takes less than 4 s of run time
and represents a 15% gain in solution quality, the last three
solutions require an additional 1.5 min to determine and
achieve a less than 5% gain in solution quality.
These results, taken together with preliminary observations

that default, exact branch-and-bound begins to time out when
mapping specification models larger than the OAI cascade,
suggest that an iterative greedy variant should be used to find
near-optimal solutions much more quickly for larger specifica-
tion models. While a fixed number of iterations may suffice
for large specifications and small or large libraries, additional
heuristics may be required when mapping large specifications
against midsized libraries. These heuristics could include a
dynamic cap on the number of iterations that takes effect when
the average increase in solution quality bottoms out over time,
or perhaps a less conservative approach to bounding that only
explores a potential solution if its best-case estimate cost is less
than the best solution cost so far plus an extra factor that
depends on previous changes in solution quality.
Discussion. We have developed and implemented an

algorithm for DAG-based genetic technology mapping in our
GDA tool, iBioSim. It is among the first genetic technology
mapping algorithms to adapt techniques from electronic circuit
design, in particular the use of a cost function to guide the
search for an optimal solution. It also part of an overall
approach to genetic technology mapping that perhaps makes
the greatest use of standards such as SBML29 and SBOL30,31 to
represent design specifications and component libraries.

Previous heuristic-based approaches to genetic technology
mapping include MatchMaker26 and SBROME.28 MatchMaker
seeks to map a abstract genetic regulatory network (AGRN)
against a feature database that contains information on qual-
itative regulatory relationships such as repression and activa-
tion, which is analogous to mapping a regulatory DAG
specification against a DAG library in our approach, but
Matchmaker works at a slightly finer grain of modularity in that
individual features such as promoters and coding sequences are
selected by themselves rather than as part of a larger motif.
Representing the library as a graph of regulatory interactions
between features in this way has the benefit of obviating the
need to construct motifs for every possible combination of
features, but it can also increase the number of feature
combinations that must be searched to obtain the best possible
solution. To address this challenge, MatchMaker takes a
minimized AGRN as input and uses a timed heuristic search
that selects features using knowledge of their regulatory interac-
tions with the rest of the database to find solutions quickly.
Solutions are obtained, however, without a cost function to bias
toward finding good solutions first. Rather, preminimization of
the AGRN specification is used to find smaller solutions in
general and those found are ranked with regards to the degree
that their features are compatible in terms of input/output
signal ranges.
SBROME, on the other hand, takes a more similar approach

to our own with regards to library organization in that parts
belong to modules that can be used to cover a circuit in fewer
matches. For the purposes of matching and covering, SBROME
uses a greedy approach that prefers larger, experimentally char-
acterized modules and finds a fixed number of solutions while
using look-ahead information to avoid exhaustively searching
the exponentially large solution space, thereby finding more
promising solutions quickly. Again, however, solutions are not
obtained with a more general cost function to evaluate the

Figure 7. Best solution cost in base pairs versus time in seconds when applying our branch-and-bound approach to the genetic OAI cascade and four
libraries of different sizes. Each dotted line represents the cost for the best possible solution when mapping against a particular library.

Table 3. Solution Times in Seconds (Left) and Sizes in Base Pairs (Right) for the Genetic OAI Cascade (Motif Size of 24 Nodes
Following Decomposition) Using Three Different Algorithms and Four Libraries of Different Sizesa

library size library size

algorithm 25 50 100 200 25 50 100 200

exhaustive search >1 h >1 h >1 h >1 h n/a n/a n/a n/a
branch-and-bound 5 100 10 40 13836 12518 11377 9335
greedy variant 2 0.03 0.06 0.02 14774 15357 11603 9592

aExahustive search was run for up to 1 h before timing out and failing to find a solution.
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quality of a solution or take advantage of information on what
the theoretically optimal solution would be barring consid-
erations of cross-talk. Both SBROME and Matchmaker are
effective tools for genetic technology mapping, but their respec-
tive approaches can still potentially benefit from being
augmented with the mathematical framework of a cost function.
In light of the results presented in this paper and the previous

comparisons to other heuristic-based approaches, there is a case
to be made for DAG-based genetic technology mapping that
uses a cost function to relate component and circuit parameters
to solution quality, rank matches between the specification and
library based on their inclusion in a theoretically optimal solu-
tion, bias toward the discovery of near-optimal solutions first,
and prune the search for suboptimal solutions. The average run
time for an exact branch-and-bound approach scales very well
with increasing library size for specification sizes less than
25 nodes, while preliminary results suggest that a greedy
branch-and-bound approach applied for a fixed number of
iterations can find near-optimal solutions to larger specifica-
tions, especially in conjunction with larger, more diverse
libraries that help to mitigate the effects of cross-talk. Medium
library sizes (relative to a given specification and degree of
cross-talk between library components), on the other hand,
may require additional heuristics when mapped against larger
specifications to more quickly determine that a near-optimal
solution has been found.
Furthermore, while our approach currently only handles

genetic circuit specifications that are directed and acyclic in
nature (i.e., no feedback), in the future we intend to handle
cyclic specifications by extending our partitioning step with
existing algorithms for efficiently cutting cyclic directed graphs
into DAGs. This is a very important step for GDA as it would
enable the automated design of genetic circuits to move beyond
combinational logic and into the realm of asynchronous state
machines. Furthermore, it should also prove to be interesting to
try different cost functions that make use of information on
DNA components other than length in base pairs alone and
explore how the formalism of a cost function can make it
quantitatively clear how important is one desired trait for a
design when compared to another. The length metric is
appealing because it is easily determined and is at least partly
related to delay in transcription/translation and the fiscal cost
associated with physical construction of a genetic circuit. In the
future, however, we would also like calculate cost based on
metrics that are more directly related to a genetic circuit’s
correct function, such as the degree to which the high and low
levels of input and output signals for two connected
components are compatible when noise is taken into account.
Lastly, while our approach currently uses a stylized form of

SBML annotated with SBO terms in order to encode the
regulatory interactions between SBOL DNA components from
which our regulatory DAGs are constructed, in the future we
intend to represent these regulatory interactions natively in
SBOL and instead use SBML primarily as a means of mathe-
matically modeling these interactions for simulation and
analysis following technology mapping. Drawing such bounda-
ries between different formats for representation and mapping
one’s own data to them are major challenges of working with
standards, but they are necessary to avoid duplication of effort
and enable complementary exchange of information. Moving
qualitative descriptions of regulation from stylized SBML into
the SBOL standard enables different GDA tools to agree on the
intended regulatory interactions between the components of a

genetic circuit design, but ultimately choose their own model-
ing standard to mathematically describe these interactions.
We would also like to use SBOL to represent nongenetic com-
ponents of design such as small molecules or light, thereby
increasing the structural range by which our approach is able
to represent genetic circuit designs in a standardized manner.
Facilitating these eventual changes to our approach is a current
development effort within the SBOL community to introduce
regulatory interactions and generalized components outside of
DNA to the SBOL standard.
iBioSim is available for download at http://www.async.ece.

utah.edu/iBioSim/.

■ METHODS

During the final stage of genetic technology mapping,
Algorithm 1 and Algorithm 2 handle the processes of matching
and covering, respectively. These algorithms differ from their
typical EDA implementations in the following ways: Algorithm 1,

in addition to determining the matches at each node and
calculating lower bounds on the solutions to which they belong,
also sorts the matches at each node in accordance with their
lower bounds. Sorting in this manner is necessary to enable
effective bounding while covering. Once one match at a node
has been ruled out as belonging to a suboptimal solution, all
other matches that come after it in sequence can be ruled out
as well and backtracking can be initiated. Algorithm 2, rather
than traversing the specification a single time to determine the
optimal solution, must instead potentially traverse the
specification many times to explore every possible solution
due to cross-talk considerations. Hence, Algorithm 2 is ex-
tended with the ability to backtrack whenever a complete
solution is found, cross-talk prevents a solution from being
found, or the best-case estimate of the final solution cost
exceeds the cost of the best solution found so far.

Matching. Algorithm 1 handles the process of matching
library DAGs to the subtrees rooted at each node in the
specification DAG and calculating lower bounds on the costs of
solutions that start with each match. During this process, nodes
are matched and bound in a topological order, that is, starting
from the leaf nodes of the specification DAG that have no
incoming edges and ending at the root. In this way, previously
calculated lower bounds can be reused to calculate later lower
bounds, a dynamic programming approach that enables
bounding to be performed with a worst-case runtime that
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scales as |G||L|, where |G| is the size of the specification and
|L| is the size of the library. As for matching, a DFA constructed
via the Aho-Corasick string matching algorithm is used to
match the subtrees rooted at each node in the specification
simultaneously against all library DAGs, thereby achieving a
worst-case runtime that scales independently of the size of the
library.
Functions called by Algorithm 1 include DETERMINE-

MATCHES, CALCULATE-Cost, WALK-PATHS, and QUICKSORT-
MATCHES. The DETERMINE-MATCHES function takes as input
the Aho−Corasick DFA D and a sequence of strings representing
paths through the specification DAG G that begin at the
current node C0 and proceed back to the leaves of G. This
string representation of the subtree rooted at C0 is provided as
input to D, which outputs the sequence of library DAGs
matching the subtree.
The CALCULATE-COST function, as its name suggests,

calculates the cost for a matching library DAG Li in accordance
with the cost function, which in this paper sums the nucleotide
counts for DNA components labeling the DAG. The WALK-
PATHS function then uses a sequence of strings representing
paths through Li to walk back through G from C0 and identify
the nodes in G that are at the boundary of the subtree covered
by Li. Together, CALCULATE-COST and WALK-PATHS work to
determine the lower bounds on the costs of solutions that start
with each match and cover all the way back to the leaves of G.
Finally, the function QUICKSORT-MATCHES uses the Quicksort

algorithm to sort the sequence of matching library DAGs at
each node in accordance with the corresponding sequence of
lower bounds on the costs of solutions starting with these
matches. Note that ordering the matches at each node in this

manner makes the overall worst-case runtime for matching
scale as |G||L|log(|L|). The reason ordering is performed is to
enhance the efficiency of covering, which has a worse worst-
case runtime that scales as |L||G|. By biasing toward the dis-
covery of better solutions earlier, ordering is expected to
increase the efficacy with which these solutions’ costs are used
to bound the search for suboptimal solutions.
Primitive routines called by Algorithm 1 include the graph

routines leaves and paths, the node routines predecessors,
matches, and lowerBounds, and the sequence routine sub. The
graph routine leaves returns the leaf nodes for the given graph,
that is, the nodes with no incoming edges, while paths returns
strings encoding each possible path from the given node (or
root node if none is given) back to the leaves of the given
graph. These strings consist of alternating letters and numbers
that represent the types and cardinality of the nodes and edges.
Next, the node routine successors returns all nodes with

incoming edges that point from the given node. The routines
matches and lowerBounds, on the other hand, return sequences
of library DAGs found to match the given node and sequences
of the lower bounds on costs of solutions beginning with these
matches, respectively. Lastly, sub returns a subsequence of the
given sequence that starts at the indicated index and has the
indicated length. This routine is used during Algorithm 1 to
effectively delete the first node in a sequence by replacing the
sequence with a subsequence that starts at index one and has a
length equal to that of the sequence minus one.

Covering. Algorithm 2 handles the process selecting
matches to form the best solution for the entire specification,
starting with matches at the root node of the specification and
covering back through the specification to its leaves in a depth-
first fashion. Despite the use of bounding to terminate the
search for suboptimal solutions, the worst-case runtime for
covering still scales as |L||G|, since in the absolute worst-case
there is no solution at all due to the constraints of genetic cross-
talk and every possible combination of library DAGs that nearly
covers the specification is tested without the aid of bounding. It
is also possible that the best solution exists but has a cost that
differs dramatically from the theoretically optimal cost for a
solution that does not account for cross-talk, in which case
bounding by comparing the two does not discriminate
suboptimal solutions until many choices have been made and
fewer branches are pruned from the decision tree as a result.
Functions called by Algorithm 2 include CROSS-TALK,

SOLUTION-IN-BOUND, and WALK-PATHS. The first two functions
serve to verify whether the current matching library DAG Li
under consideration can be part of a valid, potentially optimal
solution. Specifically, the CROSS-TALK function checks whether
or not Li shares any signaling DNA components such as pro-
moters or coding sequences with the current solution S as a
whole, while the SOLUTION-IN-BOUND function determines
whether the sum of the cost of S and the lower bounds on
the currently selected matches at nodes C is less than the cost
of the best solution B0 found so far. The WALK-PATHS function,
on the other hand, works as previously described but is used in
Algorithm 2 to determine which nodes should be considered
next after a match at the current node C0 has been selected to
be part of S.
Previously undescribed primitive routines called by Algorithm 2

include the graph routine root, the solution routine cost, and the
node routines currentMatch, branch, resetBranch, and uncovered.
The graph routine root returns the root node of the given
graph, that is, the node with no outgoing edges. Next, the
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solution routine cost returns the total cost for the given
solution. Finally, the first three node routines keep track of and
modify which match is currently selected at the given node. In
particular, currentMatch returns the currently selected match,
while branch increments the index that indicates which match is
selected and resetBranch sets this index to its starting value. The
uncovered routine, on the other hand, keeps track of which
nodes were in C alongside the given node when it was the
current node under consideration (C0). This routine enables
Algorithm 2 to recover the state of C when backtracking to a
previously considered node.
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